Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes.

نویسندگان

  • L A McLean
  • J Roscoe
  • N K Jorgensen
  • F A Gorin
  • P M Cala
چکیده

Malignant gliomas exhibit alkaline intracellular pH (pH(i)) and acidic extracellular pH (pH(e)) compared with nontransformed astrocytes, despite increased metabolic H(+) production. The acidic pH(e) limits the availability of HCO(-)(3), thereby reducing both passive and dynamic HCO(-)(3)-dependent buffering. This implies that gliomas are dependent upon dynamic HCO(-)(3)-independent H(+) buffering pathways such as the type 1 Na(+)/H(+) exchanger (NHE1). In this study, four rapidly proliferating gliomas exhibited significantly more alkaline steady-state pH(i) (pH(i) = 7.31-7.48) than normal astrocytes (pH(i) = 6.98), and increased rates of recovery from acidification, under nominally CO(2)/HCO(-)(3)-free conditions. Inhibition of NHE1 in the absence of CO(2)/HCO(-)(3) resulted in pronounced acidification of gliomas, whereas normal astrocytes were unaffected. When suspended in CO(2)/HCO(-)(3) medium astrocyte pH(i) increased, yet glioma pH(i) unexpectedly acidified, suggesting the presence of an HCO(-)(3)-dependent acid loading pathway. Nucleotide sequencing of NHE1 cDNA from the gliomas demonstrated that genetic alterations were not responsible for this altered NHE1 function. The data suggest that NHE1 activity is significantly elevated in gliomas and may provide a useful target for the development of tumor-selective therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual inhibition of sodium-mediated proton and calcium efflux triggers non-apoptotic cell death in malignant gliomas.

Malignant glioma cells maintain an elevated intracellular pH (pH(i)) within hypoxic-ischemic tumor microenvironments through persistent activation of sodium-proton transport (McLean et al., 2000). Amiloride has been reported to selectively kill human malignant glioma cell lines but not primary astrocytes (Hegde et al., 2004). While amiloride reduces pH(i) of malignant gliomas by inhibiting isof...

متن کامل

Elevated hydrostatic pressure activates sodium/hydrogen exchanger-1 in rat optic nerve head astrocytes.

Optic nerve head astrocytes become abnormal in eyes that have elevated intraocular pressure, and cultured astrocytes display altered protein expression after being subjected for > or = 1 days to elevated hydrostatic pressure. Here we show that 2-h elevated hydrostatic pressure (15 or 30 mmHg) causes phosphorylation of ERK1/2, ribosomal S6 protein kinase (p90(RSK)), and Na/H exchanger (NHE)1 in ...

متن کامل

Increased tolerance to oxygen and glucose deprivation in astrocytes from Na(+)/H(+) exchanger isoform 1 null mice.

The ubiquitously expressed Na(+)/H(+) exchanger isoform 1 (NHE1) functions as a major intracellular pH (pH(i)) regulatory mechanism in many cell types, and in some tissues its activity may contribute to ischemic injury. In the present study, cortical astrocyte cultures from wild-type (NHE1(+/+)) and NHE1-deficient (NHE1(-/-)) mice were used to investigate the role of NHE1 in pH(i) recovery and ...

متن کامل

TRANSLATIONAL PHYSIOLOGY Increased tolerance to oxygen and glucose deprivation in astrocytes from Na /H exchanger isoform 1 null mice

Kintner, Douglas B., Gui Su, Brett Lenart, Andy J. Ballard, Jamie W. Meyer, Leong L. Ng, Gary E. Shull, and Dandan Sun. Increased tolerance to oxygen and glucose deprivation in astrocytes from Na /H exchanger isoform 1 null mice. Am J Physiol Cell Physiol 287: C12–C21, 2004. First published March 10, 2004; 10.1152/ajpcell.00560.2003.—The ubiquitously expressed Na /H exchanger isoform 1 (NHE1) f...

متن کامل

Amiloride kills malignant glioma cells independent of its inhibition of the sodium-hydrogen exchanger.

Previously, we demonstrated that malignant glioma cell lines have increased intracellular pH (pHi) as a result of increased activities of the type I sodium/hydrogen exchanger (NHE1). This alkalotic pHi of 7.2 to 7.4 is favorable for augmented glycolysis, DNA synthesis, and cell cycle progression. Conversely, reductions in pHi have been associated with reduced rates of proliferation in transform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 278 4  شماره 

صفحات  -

تاریخ انتشار 2000